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The strong binders survive and are amplified, while the weak
perish. This principle is the foundation of dynamic combinatorial
chemistry.1 In dynamic combinatorial libraries (DCLs), all con-
stituents are in equilibrium through reversible reactions that
exchange the building blocks from which the different library
members are assembled. Adding to a DCL a “template” which binds
to a subset of the library members causes the equilibrium to shift,
increasing the amount of strong binders at the expense of the weak
binders.2 Ideally, the “fittest”3 will be most amplified, or, in more
general terms, the efficiency of amplification will correlate with
the strength of binding. However, recent theoretical studies by
Severin4 and ourselves5 suggest that, while the correlation between
binding efficiency and amplification is often satisfactory, special
cases occur where the correlation breaks down. We now report the
first quantitative experimental evidence showing how, in such
special cases, weaker binders can indeed beat stronger binders.6

We also demonstrate how a simple adjustment of library conditions
ensures that the best binder is most amplified.

The breakdown of the correlation between amplification and
binding efficiency occurs as a result of the tendency of DCLs to
maximize the binding interactions in the entire library.4,5 When there
is a choice between producing a large number of small moderate
binders and producing a small number of larger, stronger binders,
the latter option will not necessarily be preferred. Thus, when there
is competition between several binders, the best bindermay go
unnoticed during library screening because it is not sufficiently
amplified. More specifically, suppression of the best binder by
“inferior” competitors may occur when (i) a homo-oligomer (a
library member built up from a number of identical building blocks)
competes with a hetero-oligomer (a compound containing several
different building blocks); or (ii) a large oligomer competes with
one containing a smaller number of building blocks. In the presence
of an excess template, hetero-oligomers can suppress homo-
oligomers and small oligomers can suppress large oligomers, simply
because, with a fixed amount of building block, the library can
produce more molecules of hetero-oligomers than homo-oligomers
and more small oligomers than large oligomers.

We have previously reported the efficient amplification of a series
of micromolar receptors for ammonium ions from DCLs of
macrocyclic disulfides in water.2a-c These receptors are assembled
from building blocks1 and 2 and include a heterotrimer (7), a
homotrimer (8), and a tetramer (9).7 In a DCL containing these
receptors, competition for building block1 is inevitable; the tetramer
has to compete with the smaller trimer8, and in turn, in the presence
of building block 2, the homotrimer8 has to compete with the
heterotrimer7. These are exactly the two scenarios for which theory
predicts that the correlation between amplification efficiency and
binding affinity can break down. However, previously, we have
observed no such breakdown.2a-c Figure 1 shows that amplification
can be well-behaved and selective for the best binders. When we
use an excess of guest4 in a library made from building blocks

1-3, we selectively amplify host7 (Figure 1b).2b Similarly, mor-
phine derivative5 gives selective amplification of host8 (Figure
1c).2b,8 Also, tetramer9 can be formed without any simultaneous
amplification of trimer8 when guest6 is used (Figure 1e).2a For
this series of guests, the equilibrium constant for binding to the
best receptor is apparently sufficiently larger than that for the next-
best receptor, so that amplification is selective for the best binder.
The binding constants for the relevant host-guest combinations
are shown in Table 1. Note that guest5 selectively amplifies homo-
trimer 8, as a result of binding it with micromolar affinity, despite
the fact that its affinity for heterotrimer7 is only a factor 22 less.8

The fact that under the conditions of the above experiments ampli-
fication is selective for the best receptor illustrates that dynamic
combinatorial chemistry can give the “right answers”,3 even in
competition situations where theory warns of a possible breakdown
of the correlation between binding and amplification efficiency.
While this is comforting, we wanted to know what it would take
before such breakdown would actually happen. For this purpose,
we focused on guest10, which binds the various receptors in the
order of: tetramer. homotrimer> heterotrimer (see Table 1).
Note that the tetramer has to compete with two different trimers,
one of which is a hetero-compound.

We have prepared a DCL from building blocks1 and2 in a 2:1
ratio with a total building block concentration of 5.0 mM. Figure
2a,b shows the HPLC analysis of this library in the absence of any
guest and in the presence of 10 mM of10, respectively. Whereas
under these conditions clear amplification of both trimers was
observed, the weaker binding heterotrimer was more amplified than
the stronger binding homotrimer (the amplification factors9 are 7.4
versus 6.2, respectively); that is, the library appears to give the
“wrong”3 answer.

The simulations of DCLs predict that the template concentration
is an important parameter in the correlation between amplification
factors and binding affinities, with correlations improving as the

Figure 1. Left: HPLC analysis of a DCL made from dithiols1-3 (3.33
mM each) in water at pH 8-9 in the absence of template (a) and in the
presence of 10 mM of guest4 (b) and 5 mM of guest5 (c).2b Right: HPLC
analysis of a model DCL made from1 (5 mM) in the absence of template
(d) and in the presence of 5 mM of guest6 (e).2a
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template concentration is reduced.4,5 We have performed simple
computer simulations10 of the distribution of the library in Figure
2b at different template concentrations, using the binding constants
in Table 1 and assuming that receptors7-9 are the only library
members that have any affinity for the guest. The results of these
simulations are shown in Figure 3a and suggest that when the supply
of template is limited, producing a large number of moderate binders
is no longer beneficial and the library will revert to preferentially
producing the highest affinity host-guest complexes.4,5

We then analyzed experimentally the amplification of both
trimers as a function of the guest concentration. The results are

shown in Figure 3b and are in agreement with the theoretical
predictions; the best binder is the most amplified at lower template
concentrations, whereas a relatively small excess of template allows
the amplification factor of the heterotrimer to overtake that of the
homotrimer. The inset in Figure 3b shows the ratio of amplification
factors as a function of template concentration, indicating that
amplification is most selective at low template concentration.
Although the absolute values of the amplification factors deviate
somewhat from the simulated data, the simulations reproduce the
overall behavior reasonably well. This confirms that simulations
are a very rapid and practical way of exploring the behavior of
dynamic libraries and are a powerful tool to guide the design of
DCL experiments.

We have attempted to study the amplification behavior of the
tetramer9 in the library made from1 and2, but unfortunately, in
the HPLC analysis, the peak due to the tetramer could not be
separated from the other library members, so that no accurate
quantitative data could be obtained. Moreover, our simulations
predict that the tetramer constitutes 0.014% of the library in the
absence of template, and while its amplification factor in the
presence of template can be as high as 42 (see Supporting
Information), the amount of tetramer remains less than 0.6% of
the total library material. We therefore shifted our attention to a
simpler “library” made exclusively from building block1. Figure
2c,d shows the amplification of the competing homotrimeric and
tetrameric receptors8 and9 upon introducing guest10 (at 5 mM
concentration). The stronger binding tetramer was amplified 30
times, whereas the trimer was amplified only 8 times. That the peak
due to the trimer is nevertheless larger than that corresponding to

Table 1. Equilibrium Constants K (M-1) and Gibbs Energies of
Binding ∆G° (kJ‚mol-1) of Guests 4, 5, 6, and 10 to Hosts 7-9

77 87 9

Ka ∆G° Ka ∆G° Ka ∆G°

4 2.0× 105 -30.2 4.4× 104 -26.5
5 2.5× 104 -25.1 5.4× 105 -32.7
6 8.0× 102 -16.6 4.0× 106 -37.7

10 5.0× 104 -26.8 7.9× 104 -28.0 1.3× 106 -34.8

a Equilibrium constants were determined by isothermal titration calo-
rimetry in borate buffer (10 mM pH 9.0) at 298 K.

Figure 2. Left: HPLC analysis of a DCL made from dithiols1 (3.33 mM)
and2 (1.67 mM) in water at pH 8-9 in the absence of template (a) and in
the presence of 10 mM of guest10 (b). Right: HPLC analysis of a DCL
made from dithiol1 (5 mM) in the absence of template (c) and in the
presence of 5 mM of guest10 (d).

Scheme 1. Guest-Induced Receptor Amplification

Figure 3. Simulated (a) and experimentally observed (b) amplification
factors9 for hosts7 (b) and 8 (9) as a function of the concentration of
template 10. The inset shows the ratio of experimentally observed
amplification factors (AFs) for7 and 8 as a function of template
concentration. The lines are purely for visual guidance.
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the tetramer is due to the fact that the trimer starts off at a higher
concentration than the tetramer in the absence of template.

Amplification of trimer and tetramer was studied at different
template concentrations in silico as well as experimentally. The
results of both studies are summarized in Figure 4a,b. Both
simulation and experiment show that the amount of tetramer reaches
a maximum at a guest concentration of approximately 1.5 mM.
Increasing the concentration of guest beyond this valuereduces
the amount of the best binder. The weaker binding trimer is
gradually suppressing the stronger binding tetramer. Whereas within
our experimental window the latter remains the most amplified
compound, the simulations predict that the amplification factor of
the trimer will eventually be larger than that of the tetramer, but
only at template concentrations in excess of 500 mM (see inset in
Figure 4a).

In conclusion, our results represent a first quantitative experi-
mental glimpse of the intriguing behavior of complex equilibrium
systems, confirming that the competition between receptors within
a dynamic library need not always be won by the best receptor.
However, in the systems we have investigated, such behavior was
only observed when the affinities of the competing receptors are
similar11 or when large amounts of template are used. Reassuringly,
in all instances, dropping the amount of template to close to
stoichiometric concentrations ensures amplification of the fittest
without any serious loss of templating efficiency.
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Figure 4. Simulated (a) and experimentally observed (b) amplification
factors9 for hosts9 (2) and 8 (9) as a function of the concentration of
template10. The inset in (a) represents the simulated amplification factors
for hosts9 (solid line) and8 (dashed line) at higher template concentrations.
The inset in (b) shows the ratio of experimentally observed amplification
factors for7 and8 as a function of template concentration. The lines are
purely for visual guidance.
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